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Department of Theoretical Physics, Royal Institute of Technology, S-10044 Stockholm, 
Sweden 

Received 16 February 1987 

Abstract. We construct a three-dimensional generalisation of the brick lattice and show 
that the partition function for a suitably modified SO(n) or SU(n) lattice gauge theory can 
be written exactly as a sum over closed surfaces on this lattice. For king lattice gauge 
theory, we derive a formal expression for the partition function. 

It is widely believed that a lattice gauge theory at the critical point is equivalent to a 
gas of random surfaces (Frohlich 1985, Schrader 1985). A numerical simulation 
consistent with this conjecture has been carried out by Karowski (1986), who found 
Ising-like exponents within error bars. For the three-dimensional Ising lattice gauge 
theory, such constructions have been made by several authors (e.g. Fradkin et a1 1980, 
Kavalov and Sedrakyan 1986). Generalising a trick by Domany et a1 (1981), we will 
show how to rewrite a peculiar SO(n) symmetric lattice gauge theory defined on a 
particular three-dimensional lattice as a surface gas. Our construction also works for 
other gauge groups. 

The formulation of the O ( n )  spin model as a gas of self-avoiding random loops 
was only possible on the honeycomb lattice. The reason for this is that the coordination 
number of this lattice is three, while the vertices of all other lattices border at least 
four links. The construction of Domany et a1 (1981) was generalised to arbitrary 
lattices by Larsson (1985), but the result now became a gas of self-intersecting loops 
with complicated statistics, which is much more difficult to treat. 

In three dimensions there is no lattice with coordination number three, but we can 
construct one where no edge is on the boundary of more than three faces. This is 
done as follows. Start with a two-dimensional ( 2 ~ )  brick lattice (BL), which is isomor- 
phic to the honeycomb lattice. The full black lines of figure 1 form a 2~ BL. Erect 

Figure 1. The three-dimensional brick lattice. One layer of bricks follows the lattice made 
of full lines, every other layer follows the lattice made of broken lines. 
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vertical links on each vertex of this lattice. Next place a new layer on top of the first, 
but displaced horizontally as shown in figure 1 (the grey lines). After this we repeat 
the procedure and add on more layers, every other layer displaced to avoid those lines 
on adjacent layers are precisely on top of each other. Put faces (plaquettes) wherever 
two bricks meet. The links and vertices are naturally defined as the borders between 
different plaquettes and links, respectively. The lattice so constructed we call the 3D 
BL and it has the following properties. 

(i)  Each brick is surrounded by 14 faces, six vertical ones and four on each of the 
two horizontal boundaries. 

(ii) Each face borders two bricks. 
(iii) Half of the horizontal faces are surrounded by four links, half are surrounded 

(iv) One third of the vertical faces are surrounded by four links, two thirds are 

(v) Each horizontal link borders three faces, two horizontal ones and one vertical. 
(vi) Each vertical link borders three vertical faces, and no horizontal one. 
(vii) Each vertex borders four links. 
This construction can be generalised to any dimension by induction. Take each 

layer in the d-dimensional BL to be a ( d  - 1)-dimensional BL and displace the layers 
horizontally so that ( d  - 2) cells of adjacent layers only intersect on ( d  - 3)  -dimensional 
sets. In particular, the I D  lattice with equal spacing is also the ID  BL. The d-dimensional 
BL obviously has the following properties. 

by six links. 

surrounded by six links. 

(i)  Each ( d  - 1)-dimensional hyperface borders two d-dimensional bricks. 
(ii) Each ( d  - 2)-dimensional hyperlink borders three hyperfaces. 
(iii) Each I D  link borders d faces. 
(iv) Each OD vertex borders d + 1 links. 
It is also obvious that there is no family of lattices, defined for all d, where the p 

cells border fewer ( p  + 1) cells. 
Consider SO(n) lattice gauge theory, except in the case that n = 1, where we choose 

the symmetry group to be O(1). This is called Ising lattice gauge theory (Wegner 1971, 
Kogut 1979). Normally one takes the Euclidean action to be, on the hypercubic lattice, 

s = - p  x t r  oiojoko/ (1) 
e 

where Oi = (OqP)  is an orthonormal n-dimensional matrix associated with the link i 
and (ijkl) are the links surrounding an elementary face (plaquette). The sum runs over 
all plaquettes B of the lattice, and the trace (tr) is with respect to the components of 
the product matrix, i.e. 

The summation convention is used. However, we are normally only interested in the 
continuum limit of ( l ) ,  where the lattice spacing goes to zero for fixed physical length 
scales. This is equivalent to letting the correlation length diverge for fixed lattice 
spacing, which is characteristic of a critical point. The critical behaviour is generally 
believed to be universal; it is not sensitive to the details of the model, nor of the 
particular lattice chosen, as long as the symmetry of the action and the dimensionality 
of the lattice is preserved. To study the continuum limit of the 3~ version of ( l) ,  we 
can therefore modify the action to be 

tr oio,oko/= o ~ p o ~ y o ~ 6 0 ~ .  
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where the matrices now live on the links of the 3~ BL and the sum runs over all faces 
of this lattice. II Oi is the product of matrices around a plaquette. This product 
contains four or six factors, depending on how many links border the plaquette. 

There are two potential problems with this model. The lattice is necessarily 
anisotropic, in contrast to the 2~ BL, which is isomorphic to the honeycomb lattice. 
Usually, spatial anisotropy does not alter the true critical behaviour, but it is only 
important in a crossover region (Aharony 1976). However, there are examples where 
it changes the asymptotic universality class of a model (Boyanovsky and Cardy 1982, 
Lawrie and Prudnikov 1984). We do not think that similar problems will arise here, 
but the possibility should be noted. Moreover, the model runs into trouble for U > 1, 
because then there are configurations with imaginary action. The same problem arises 
in the analogous two-dimensional spin models, without disturbing the continuum limit. 
In the Ising ( n  = 1 )  case, the actions (1) and (2) are identical, apart from an additive 
constant, if U = tanh p. 

The partition function is 

Z ( u ) = T r e - S = T r n  
B 

(3) 

where the big trace (Tr) is with respect to all values of the fluctuating matrices {Oi}. 
If we normalise the group measure to unity, so that 

T r 1 = 1  
0, 

we find 

while 

The last relation follows because it is the only rank-four tensor which satisfies the 
orthogonality conditions: OppOYa = 6"' and O ~ p O ~ y  = S p y .  

We are now in the position to expand out the product in (3). We consider each 
plaquette on the lattice to be occupied if we choose the second term for that plaquette, 
and otherwise we consider it empty. When we perform the trace (Tr), only those 
configurations will survive which consist of closed surfaces, because a boundary would 
imply that an odd number of faces next to that link were occupied, and that is impossible 
because of (46). Moreover, these surfaces are self-avoiding, simply because there is 
no edge on the 3~ B L  where four faces can meet. Thus, the partition function (3) can 
be expressed as a sum over all configurations consisting of closed surfaces only. 

Unfortunately, we have not been able to derive a formal expression for the partition 
function, analogous to the result of Domany et al, for general n. In the Ising case, 
however, the tensor (4c) is a scalar and the partition function becomes 

Here the sum runs over all configurations of closed surfaces 3 and the product runs 
over the s disjoint surfaces in the configuration 3. p = Z p E  is the total number of 
occupied plaquettes. Thus, the Ising lattice gauge theory is equivalent to a gas of 
self-avoiding closed surfaces with unit chemical potential for surfaces, whose partition 
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function for general chemical potential p is 2 = Z psup, where s is the number of 
disjoint surfaces in a configuration. This result is completely analogous to the situation 
in two dimensions, where the chemical potential for loops is one in the Ising case. 

In conclusion, we have generalised the result of Domany et al, who found that the 
O(n) spin model on the 2~ BL can be written as a theory of closed loops, to the 3~ 

SO(n) lattice gauge theory, but we have not found an explicit formal expression for 
the partition function except when n = 1. This result can immediately be generalised 
to other groups, such as SU(n). As long as the product of an odd number of matrices 
vanishes, a pure lattice gauge theory defined on the 3~ BL, whose action is analogous 
to ( 2 ) ,  is equivalent to some gas of self-avoiding closed surfaces. It might also be 
interesting to use actions like ( 2 )  in strong coupling expansions on four-dimensional 
lattices, because terms in the series could be calculated for all n at once. 

The generalisation to higher dimensions is not straightforward. In four dimensions, 
one could imagine variables living on the faces of the 4~ BL and take the action to be 
a sum over 3~ hyperfaces. However, it is not obvious how to define multiplication of 
non-commuting entities around a 3 cell. The Ising case can always be defined, because 
there the product of spins can be performed in any order. Using exactly the same line 
of reasoning as above, we find that the partition function of a model of Ising spins 
living on the ( d  - 2 )  cells and interacting around the ( d  - 1) cells of a d-dimensional 
BL can be written as a sum over closed ( d  - 1)-dimensional hypersurfaces. Fmmally, 
the result is exactly the same as ( 5 ) ,  but where p now stands for the number of 
hyperfaces. 
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